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Overview 
Internal flow calculations are used by the Argonaut-SL and SW for real time flow data. 
•  Flow is based on velocity multiplied by cross sectional area.   
•  Water level is measured using a vertical acoustic beam; cross sectional area is calculated 

based on user-supplied channel dimensions.   
•  The firmware supports three channel types:  irregular (i.e. natural stream, defined by up to 20 

survey points), trapezoidal (i.e. regular concrete lined channel), and pipe.  For flow 
calculations, irregular and trapezoidal channels are treated the same (open channels). 

•  Velocity is based on the Argonaut measured velocity, which is modified either by a user-
supplied index calibration or by a theoretical model of how measured velocity compares with 
the mean velocity throughout the channel.   

•  This document describes the theoretical models used to relate Argonaut measured velocity to 
mean channel velocity. 

•  An empirically determined index velocity relation will be more accurate than a theoretical 
approach.  However, the theoretical approach may provide reasonably accurate results 
without the independent measurements needed to develop the index velocity relation. 

Theoretical Approach 
The approach largely comes from Chen (1991), starting with the power velocity distribution. 
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Where 
u = velocity at some location y within the channel 
u* = boundary shear velocity  
a = constant 
m  = constant 
y = normal range to the boundary 
y' = reference distance for boundary shear velocity 

 
A more useful formula from our point of view looks at the relation between velocity at a point 
within the channel to the mean velocity throughout this channel.  This is obtained by integrating 
the above relation over the geometry of the channel.  For an example, consider a rectangular 
channel (constant depth).  Ignorning the effects of the channel walls, we integrate the vertical 
profile to get the mean velocity in the channel.   
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This can be reduced to: 

Equation 3 
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Where: 
V = mean velocity in the channel 
h = channel depth 

 
Combining Equation 1 and Equation 3 gives an expression for the mean velocity throughout the 
channel based on the velocity measured at a given depth. 
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We consider the ratio (V/u) to be a velocity scale factor.  Measured velocity (u) is multiplied by 
this value to give mean velocity in the channel.  Similar relationships can be obtained for 
different channel types.   
 
Gonzales, et al (1996) compares theoretical profiles with data collected with an ADCP.  They 
estimate an exponential value of m=1/6, which agrees with Manning’s equation.  For modeling 
in the Argonaut firmware, we use m=1/6. 

Theoretical Flow – Argonaut-SL 
The Argonaut-SL measures velocity at one depth within the water column.  Comparing that 
depth with the total channel depth allows us to estimate the relationship between the measured 
velocity (u) and the mean channel velocity (V).  Using m=1/6 in Equation 4, we get: 

Equation 5 
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This relationship is used for any channel type (irregular, trapezoidal, or pipe), although in reality 
an SL is not appropriate for installation in a pipe.  For practical installations, the measured SL 
velocity is scaled by values ranging from 0.86 (measurement location near the surface) to 1.20 
(measurement location near the bottom) to give the mean channel velocity (see Figure 1 for a 
plot of the velocity distribution).  Mean channel velocity is multiplied by channel area (based on 
water level and channel geometry) to get flow. 
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Theoretical Flow – Argonaut-SW  
The Argonaut-SW is mounted on the bottom, looking up, and vertically integrates velocity over 
some portion of the water column (from the lowest possible point to the surface).  The starting 
point is determined by a combination of the blanking distance, pulse length, and the mounting 
height of the instrument.  For standard operating parameters, the first point is about 15 cm above 
the transducer head, and 20-25 cm above the bottom of the channel. 
 
To relate SW velocity to mean channel velocity, we predict how the integrated velocity 
measured by the SW compares with the mean channel velocity.   

Open Channels 
For open channels (regular or irregular shapes), we start with Equation 4.  We look only at the 
vertical velocity distribution and ignore the effects of channel walls.  We integrate over the 
portion of the water column measured by the SW to get a relationship of the measured velocity 
to the mean channel velocity.   
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This can be reduced to the following. 

Equation 7 
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Where: 
umeas = Argonaut-SW measured velocity 
y0 = starting point for SW integrated velocity cell (from bottom of channel) 

 
Substituting m=1/6 in the above gives the following. 
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For practical situations, the SW measured velocity is scaled by values ranging from 0.88 (30 cm 
deep, top 30% of the water column is measured) to 0.98 (400 cm deep, over 90% of water 
column is measured) to give the mean velocity in the channel.  Mean velocity is multiplied by 
channel area (based on water level and channel geometry) to give flow.   Plots of the velocity 
coefficients, both single point (Equation 5) and integrated (Equation 8) are shown in Figure 1. 
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Figure 1 - Theoretical Velocity Profiles for Open Channel Flow 

Flow in Pipes - Full 
For flow in full pipes, we develop an equation analogous to Equation 4.  We integrate the power 
law (Equation 1) over a pipe cross section to relate mean pipe velocity to shear velocity.  The 
distance to the nearest boundary (y) is the radial distance to the channel wall. 

Equation 9 ( )( )
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Where 
r0 = pipe radius 

 
We combine Equation 1 and Equation 9 to get the following relationship. 

Equation 10 ( )( )
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The SW measures integrated velocity from some point within the water column (typically 20-25 
cm off the bottom) to the top of the pipe.  We consider two cases to develop a relationship 
between integrated and mean velocity:  start of measurement volume above mid point of the 
pipe, and start of measurement volume below the mid point of the pipe.  If the measurement 
volume starts above the mid-point of the pipe: 
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Substituting m=1/6: 

Equation 12 
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If the measurement volume starts below the mid point of the pipe, we combine two integrals (one 
for the top half of the pipe, one for the fraction of the bottom half that is measured): 

Equation 13 
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Substituting m=1/6: 

Equation 14 
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The SW measured velocity is scaled by values ranging from 1.03 (30 cm diameter, top 30% of 
the water column is measured) to 0.92 (200 cm diameter, 90% of water column is measured) to 
give the mean velocity in the pipe.  Plots of the velocity scale factors (both for single point and 
integrated velocity) are shown in Figure 2. 
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Figure 2 – Theoretical Velocity Profiles for Full Pipe 

Flow in Pipes – Partially Full 
Flow in partially full pipes presents a difficult problem because of the addition of another 
variable (the fraction of the pipe that is filled), and the complexity of determining the distance to 
nearest boundary.  To solve this problem, we use the following relation derived starting with 
Equation 1. 
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Combining equation 15 with equation 1 to eliminate u*, we get the following. 

Equation 16 
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Where: 
∫∫ = integration over the wetted area of the pipe 
y  = distance to the nearest boundary 
 

For any given condition (fraction of the pipe that is full), the ratio of the two double integrals is 
constant, reducing equation 16 to the following. 
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We think of the ratio (V/u) as a velocity scale factor; we multiple measured velocity (at a given 
point in the pipe) by this scale factor to determine mean velocity in the channel.   
 
To determine the relationship between the SW measured velocity and mean velocity in the pipe, 
we integrate Equation 17 over the portion of the pipe measured by the SW.  SW velocity 
measurements are assumed to be along the centerline of the pipe.  The integration is fairly simple 
if the pipe is less than half full.  The integration become much more difficult for a pipe that is 
more than half full (but not completely full) due to the complexity of determining the closest 
distance to the wetted wall of the pipe.  Because of this complexity, the integration was done 
numerically as described below. 
 
The numerical approximation was run at different water levels.   
•  The pipe was divided into a number of small elements (~1 million). 
•  The ratio of the integrals in Equation 16 was numerically estimated for each water level. 
•  A profile of the velocity scale factor (V/u) was created along the centerline of the pipe. 
•  Figure 3 shows a plot of the this scale factor for pipes ranging from 10 to 100% full (in 10% 

increments).  The profile is along the centerline of the pipe. 
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Figure 3 – Theoretical Velocity Profiles for a Partially Full Pipe 

To relate the SW measured velocity to mean velocity in the pipe, we need to account for the 
portion of the water column measured by the SW. 



SonTek 
 
 

Argonaut Internal Flow Theoretical Modeling (November 2002) 8 

•  The SW integrates velocity over a portion of the water column, starting some distance from 
the bottom of the pipe and ending at the water surface. 

•  The profile of the single point velocity scale factor was integrated from the surface down.  
The ending point of this integration corresponds to the first point in the integrated velocity 
measurement made by the SW. 

•  We perform this integration for any measured fraction of the water column, since the portion 
of the water column measured by the SW will vary depending on water depth, sensor 
installation, and system operating parameters. 

•  All calculations are normalized, looking at the fraction of the pipe that is full and the faction 
of the water column that is measured.  They can be applied to a pipe of any dimension. 

•  Figure 4 shows the results of this integration for pipes ranging from 10 to 100% full.  Water 
depth is plotted as fraction of the total water depth, rather than as a fraction of the pipe depth.   

•  This graph shows the scale factor by which SW velocity data is multiplied to give mean 
velocity in the pipe.  To use this graph: 

o Select the curve corresponding to the fraction of the pipe that is full.   
o On the vertical axis, pick the fraction of the water depth measured by the SW. 
o The value shown for that curve at that level gives the SW velocity scale factor.  

Multiply SW velocity by this value to get mean velocity in the pipe. 
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Figure 4 – Theoretical Integrated Velocity Profiles for a Partially Full Pipe 

 
Results for a full pipe were compared with the symbolic solution shown earlier.  The level of 
agreement depended on the number of points used for the calculations; for the final calculations 
(~1 million points) the agreement was better than 0.1%. 
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Some notes about the SW velocity scale factor. 
•  The minimum practical value is about 0.81 (50 cm diameter pipe flowing 60% full, top 30% 

of water column is measured). 
•  The maximum practical value is about 1.03 (30 cm diameter pipe flowing full, top 30% of 

water column is measured). 
•  The largest changes occur in nearly full pipes.  The difference between a pipe flowing 90% 

and 100% full can be more change the scale factor by more than 10%.  The changes are 
exaggerated in small pipes, where a smaller portion of the water column is measured. 

 
Within the Argonaut-SW, we implement the results as follows. 
•  A look up table was created using the numerical simulations. 
•  Simulations were done for pipes ranging from 5 to 100% full, in 5% increments. 
•  For each condition we will consider measurements that cover from 5 to 100% of the velocity 

profile in 5% increments.  In practical situations, the SW should never measure less than 
30% nor more than 95% of the water column. 

•  Based on the actual conditions (fraction of pipe that is full, and fraction of water column that 
is measured) we interpolate from the nearest points in the look up table to estimate the 
velocity scale factor. 

•  Measured velocity is multiplied by the scale factor, and then by wetted area, to give flow in 
the pipe. 

Assumptions and Limitations 
These theoretical models use some basic assumptions that should be kept in mind when 
evaluating their usefulness. 

Power law  
•  We assume the flow follows a power law velocity distribution with m=1/6.   
•  This effectively makes assumptions about bottom roughness and boundary conditions. 

Open channel 
•  For open channel flow, we look only at the vertical velocity distribution. 
•  We do not account for the influence of channel walls.  This is at least partially supported for 

concrete channels, as the bottom will typically be covered in sediment giving higher flow 
resistance compared to the relatively smooth channel walls. 

•  Our modeling assumes constant depth across the channel. 

Pipe flow 
•  We assume uniform roughness around the diameter of the pipe. 
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